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One of  the most famous principles of  QP is the Heisenberg uncertainty principle, firstly introduced 
in 1927 by the German physicist Werner Heisenberg. The principle sets a fundamental limit to the 
accuracy with which the values of  certain pairs of  physical quantities, named complementary or 
canonically conjugate variables, e.g. the position and the momentum of  a particle, can be known. In 
physics knowing means measuring, and the Heisenberg principle is indeed related to the measurement, 
although the connection between the two is subtle. In fact, for a long time it was mistakenly 
identified with another physical effect, known as the observer effect. The latter refers to the situation in 
which measuring a physical quantity inevitably disturbs the system. A typical example is the 
measurement of  the pressure of  a car tyre: it’s very difficult to perform it without letting some air 
escape, that is, without altering the very same property that we want to measure, the pressure itself. 
Such effect was initially used by Heisenberg himself  to explain the uncertainty in the Quantum 
World. Today we know that the uncertainty principle means something different: it’s related to 
intrinsic features of  all quantum systems, and neither experimental accuracy nor the technology 
exploited to perform the measurement have anything to do with it. Therefore, even if  undoubtedly 
QP shed new light to the concept of  ideal measurement, typical of  Classical Physics, we must avoid 
confusing the observer effect with the Heisenberg uncertainty principle. While the latter is a purely 
quantum phenomenon,  the former exists also for classical systems.  

The mathematical description of  measurement of  an observable  encompasses a Hermitian 
operator , a set of  possible results  with the associated projectors , and the probability 

 of  obtaining the measurement outcome , given the state  (see the Quest entry 
measurement). These, in turn, allow us to define its mean value . Let us consider an 
observable  and the associated operator , with mean value . We define the standard 
deviation as  

  

This is a positive real number quantifying the statistical fluctuations of  the measurement outcomes. 
Therefore, the smaller , the higher the accuracy of  the measurement. Given two observables,  
and , it’s possible to show that  

                                                     (1) 

where  is the commutator between  and , usually different from zero due to the 
structure of  the Hilbert space where the operators act .  1

Inequality (1) represents the Heisenberg principle in its most general form: the more precisely 
determined  is, the more undetermined  is, since the smaller , the bigger , and vice versa. 
The commutator between two operators can be trivial, that is, equal to zero, , or equal to a 
third operator, . A common example is a commutator equal to the identity times a scalar, 
as is the case for the position operator, , and the corresponding momentum operator, , for which 

. This is known as the canonical commutation relation. From equation (1) it follows that 
                        ;                      (2) 

How well-determined the position  is limits how well-determined the momentum  can be, and 
vice versa.  
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 For instance, if  we think about the matrix representation of  the operators, it is easy to see that the product of  two 1

arbitrary matrices often depends on the order in which it is performed, so that their commutator is different from zero.




The uncertainty principle is a consequence of  the non-commutativity between operators, since  
and  can be both equal to zero only if  . When this is the case,  and  are named 
commuting operators, and it can be shown that they have the same eigenstates. In other words, 
if   and  commute, there exists a basis  that diagonalises them simultaneously, i.e.,  

 and . 
Therefore, relation (2) implies that no quantum state can be an eigenstate of  the position and of  the 
momentum simultaneously. 

As we can learn in the quantum measurement entry of  Quest, when the observed system is in an 
eigenstate of  an observable, measuring that observable will always yield a deterministic outcome. 
This means that, in that case, all the measurements of  observables associated to commuting 
operators will be deterministic as well, and hence we can state that both quantities are determined. 
Instead, when the system is in an eigenstate of  some observable, but we measure another observable 
associated to an operator which does not commute with the former, we’ll find a probabilistic answer. 
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