LEARN: TUNNELLING - Advanced¹

In the Discover description of quantum tunnelling we use as an analogy "a ball trying to roll over a hill". An example of a physical system displaying this behaviour is an electron that approaches another electron, fixed in some place, and encounters a potential barrier due to the mutual repulsive force exerted between the two. In the following, we will keep things as simple as possible, without worrying about how a potential barrier can be created. We will consider a one-dimensional problem, involving a particle moving in one dimension, say x, from left to right, and a square potential barrier V(x), as represented in the picture below. In fact, despite being a particularly easy to solve case, this example illustrates the type of behaviour seen in more complex situations.

The energy eigenvalue equation for a particle with mass m moving in one dimension is

$$\hat{H} |\Psi\rangle = \left(\frac{1}{2m}\hat{P}^2 + V(\hat{X})\right) |\Psi\rangle = E |\Psi\rangle,$$

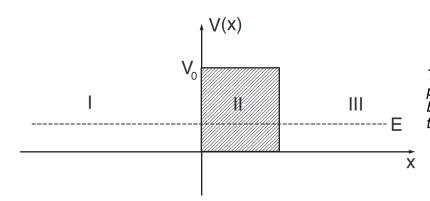
where \hat{H} is the system Hamiltonian, \hat{P} is the momentum operator, $V(\hat{X})$ is the potential, depending on the position operator \hat{X} , and E is the energy of the system, i.e., the eigenvalue of the Hamiltonian. We can rewrite it in terms of the wave-function $\Psi(x)$ (see the Quest entry wave-like behaviour) as the time-independent Schrödinger equation,

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx}\Psi(x) + V(x)\Psi(x) = E\Psi(x)$$

or

$$\Psi''(x) = -\frac{2m}{\hbar^2} \left(E - V(x) \right) \Psi(x). \tag{1}$$

This is an ordinary second-order differential equation, and if the potential V(x) is everywhere continuous, then not only Ψ'' , but also Ψ and Ψ' , are continuous. Instead, if the potential is discontinuous, it may happen, in the worst case of an infinite discontinuity of V(x), that the first derivative is discontinuous. However, Ψ will be continuous in any case, and therefore, we can always require continuity conditions for the wave-function $\Psi(x)$. This is actually what allows us to solve the Schrödinger equation, patching together the solutions in different potential regions. Moreover, it is easy to show (for instance considering a stationary state and then using $\{|p\rangle\}_{\mathscr{H}}$, the momentum states basis) that we can get meaningful solutions only when $E \ge 0$.



The propagation of a quantum particle on the other side of the barrier (region III) is known as tunnel effect or tunnelling.

The square potential barrier is a potential such that:

¹ There are many textbooks where you can find the calculations reported here. We refer to "Quantum processes systems, & information" B. Schumacher, M. D. Westmoreland, Cambridge University Press.

qplaylearn

$$V(x) = \begin{cases} 0 & x < 0\\ V_0 & 0 \le x \le L\\ 0 & x > L \end{cases},$$

characterised by its "height" V_0 and its "width" L. We can therefore identify three different regions (I, II and III) with constant potential, for which we have to find the respective solutions of Eq. (1). A classical particle in region I with $E < V_0$ cannot access region III, since it is reflected by the barrier; if $E > V_0$ the particle can pass. But in Quantum Physics a particle with $E < V_0$ has a probability different from zero to be found in region III. Also, it can be found reflected in region I even if $E > V_0$. Notice that, since this a diffusion phenomenon, we should in principle solve a time-dependent problem; nonetheless by considering eigenstates of the energy, also known as *stationary states*, we can ignore the time-dependence, and therefore the problem is reduced to solving the one-dimensional time-independent Schrödinger equation reported above.

In any region where the potential is a constant, the mathematical solutions of Eq. (1) split into two groups:

• When $E < V_0$, the general solution is of the form

$$\Psi(x) = A e^{bx} + B e^{-bx}$$
, with $b = \sqrt{\frac{2m}{\hbar^2}} (V_0 - E)$,

that is, a superposition of increasing and decreasing exponential functions.

• When $E > V_0$, the general solution is of the form

$$\Psi(x) = A e^{ikx} + B e^{-ikx}, \quad \text{with} \quad k = \sqrt{\frac{2m}{\hbar^2}} (E - V_0),$$

that is, a superposition of rightward and leftward moving plane waves.

Going back to our case, let us focus on a particle propagating from left to right with $E < V_0$: we want to determine whether the chance of finding the particle in region *III* is null. Choosing the coefficient A = 1 and requiring that, in the third region, only the rightward solution exists, the wave-function will be

$$\Psi(x) = \begin{cases} e^{ikx} + Be^{-ikx} & x < 0\\ Ce^{bx} + De^{-bx} & 0 \le x \le L \\ Fe^{ikx} & x > L \end{cases}$$

For x < 0 the first part of the wave-function corresponds to the *incident wave* and the second one to the *reflected wave*, whereas for x > L we have the part named *transmitted wave*. Via the continuity conditions of the wave-function $\Psi(x)$ and of its first derivative $\Psi'(x)$, we can determine the coefficients B, C, D, F. The continuity of the wave-function tells us that

$$\Psi_{I}(0) = \Psi_{II}(0) \Rightarrow 1 + B = C + D$$

$$\Psi_{II}(L) = \Psi_{III}(L) \Rightarrow Ce^{bL} + De^{-bL} = Fe^{ikL}, \qquad (2)$$

while the requirements on the first derivative lead to

$$\Psi'_{I}(0) = \Psi'_{II}(0) \Rightarrow ik(1-B) = b(C-D)$$

$$\Psi'_{II}(L) = \Psi'_{III}(L) \Rightarrow b(Ce^{bL} - De^{-bL}) = ikFe^{ikL}.$$
 (3)

Such conditions provide us a system of four linear equations for the four unknown variables B, C, D, F; solving it, we can obtain the wave-function everywhere.

In particular, we want to verify if there is the chance of finding the particle in region *III*; in order to do so, we must introduce the *probability flux j*, defined as

$$j(x,t) = \frac{i\hbar}{2m} \left(\frac{\partial \Psi^*}{\partial x} \Psi - \Psi^* \frac{\partial \Psi}{\partial x} \right).$$
(4)

Exploiting this definition, we can then identify the reflection and transmission coefficient, R and T, via the ratios of the reflected flux to the incident flux and of the transmitted flux to the incident flux, respectively:

$$R = \frac{|j_{ref}|}{|j_{inc}|} \quad , \quad T = \frac{|j_{tran}|}{|j_{inc}|}$$

where j_{ref} , j_{inc} and j_{tran} are obtained via Eq. (4), considering the reflected, the incident and the transmitted waves. Since we chose A = 1, we get $R = |B|^2$ and $T = |F|^2$. Since we are interested in finding *T*, we have to determine *F*. Using equations (2) and (3), we can write *C* and *D* in terms of *F*:

$$C = \frac{1}{2}e^{-bL}\left(1 + \frac{ik}{b}\right)e^{ikL}F,$$
$$D = \frac{1}{2}e^{bL}\left(1 - \frac{ik}{b}\right)e^{ikL}F.$$

Substituting these in the first equations of relations (2) and (3) yields

$$F = \frac{4ikbe^{-ikL}}{(b+ik)^2 e^{-bL} - (b-ik)^2 e^{bL}}$$

Now we can calculate *T*, and it is actually a bit easier to write down the inverse of the transmission coefficient:

$$\frac{1}{T} = 1 + \frac{V_0^2}{4E(V_0 - E)} \sinh^2 bL \,,$$

where we have expressed b and k in terms of E and V_0 . Even though $E < V_0$, being T > 0, the particle may "tunnel" through the barrier with some probability. Notice that if the barrier is very thin, so that $bL \ll 1$, then $T \simeq 1$ and the barrier is nearly "transparent." On the other hand, if the barrier is very wide, with $bL \gg 1$, the hyperbolic sine function can be approximated by $\sinh bL = \frac{1}{2}e^{bL} \gg 1$. In this case,

$$T\simeq \frac{4E(V_0-E)}{V_0^2}\,\frac{4}{e^{2bL}}\,,$$

that means, for wide barriers, the tunnelling probability decreases exponentially with L.

LICENSE

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means you're free to copy, share, and build on this essay, but not to sell it. If you're interested in commercial use, please contact us.