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In the Discover description of  quantum tunnelling we use as an analogy “a ball trying to roll over a 
hill”. An example of  a physical system displaying this behaviour is an electron that approaches 
another electron, fixed in some place, and encounters a potential barrier due to the mutual repulsive 
force exerted between the two. In the following, we will keep things as simple as possible, without 
worrying about how a potential barrier can be created. We will consider a one-dimensional 
problem, involving a particle moving in one dimension, say , from left to right, and a square 
potential barrier , as represented in the picture below. In fact, despite being a particularly easy 
to solve case, this example illustrates the type of  behaviour seen in more complex situations.  

The energy eigenvalue equation for a particle with mass  moving in one dimension is  

, 

where  is the system Hamiltonian,  is the momentum operator,  is the potential, depending 
on the position operator , and  is the energy of  the system, i.e., the eigenvalue of  the 
Hamiltonian. We can rewrite it in terms of  the wave-function  (see the Quest entry wave-like 
behaviour) as the time-independent Schrödinger equation, 

  

or  

                                         .                                  (1) 

This is an ordinary second-order differential equation, and if  the potential  is everywhere 
continuous, then not only , but also  and , are continuous. Instead, if  the potential is 
discontinuous, it may happen, in the worst case of  an infinite discontinuity of  , that the first 
derivative is discontinuous. However,  will be continuous in any case, and therefore, we can always 
require continuity conditions for the wave-function . This is actually what allows us to solve the 
Schrödinger equation, patching together the solutions in different potential regions. Moreover, it is 
easy to show (for instance considering a stationary state and then using , the momentum 
states basis) that we can get meaningful solutions only when .  
 

 

The square potential barrier is a potential such that: 
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 There are many textbooks where you can find the calculations reported here. We refer to “Quantum processes systems, 1

& information” B. Schumacher, M. D. Westmoreland, Cambridge University Press.

The propagation of a quantum 
particle on the other side of the 
barrier (region III) is known as 
tunnel effect or tunnelling.  



 , 

characterised by its “height”  and its “width” . We can therefore identify three different regions 
(I, II and III) with constant potential, for which we have to find the respective solutions of  Eq. (1). A 
classical particle in region I with  cannot access region III, since it is reflected by the barrier; if  

 the particle can pass. But in Quantum Physics a particle with  has a probability 
different from zero to be found in region III. Also, it can be found reflected in region I even if  

. Notice that, since this a diffusion phenomenon, we should in principle solve a time-
dependent problem; nonetheless by considering eigenstates of  the energy, also known as stationary 
states, we can ignore the time-dependence, and therefore the problem is reduced to solving the one-
dimensional time-independent Schrödinger equation reported above.  

In any region where the potential is a constant, the mathematical solutions of  Eq. (1) split into two 
groups:  
• When , the general solution is of  the form  

                                     

that is, a superposition of  increasing and decreasing exponential functions. 

• When , the general solution is of  the form  

                                    

that is, a superposition of  rightward and leftward moving plane waves. 

Going back to our case, let us focus on a particle propagating from left to right with : we want 
to determine whether the chance of  finding the particle in region III is null. Choosing the coefficient 

 and requiring that, in the third region, only the rightward solution exists, the wave-function 
will be 

  

For  the first part of  the wave-function corresponds to the incident wave and the second one to 
the reflected wave, whereas for  we have the part named transmitted wave. Via the continuity 
conditions of  the wave-function  and of  its first derivative , we can determine the 
coefficients . The continuity of  the wave-function tells us that  

               
                                           ,                  (2) 

while the requirements on the first derivative lead to  

                                                       
                                                 (3) 

Such conditions provide us a system of  four linear equations for the four unknown variables 
; solving it, we can obtain the wave-function everywhere.  

In particular, we want to verify if  there is the chance of  finding the particle in region III; in order to 
do so,  we must introduce the probability flux , defined as  

                                                 .                          (4) 
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Exploiting this definition, we can then identify the reflection and transmission coefficient,  and , 
via the ratios of  the reflected flux to the incident flux and of  the transmitted flux to the incident flux, 
respectively:  

             , 

where  and  are obtained via Eq. (4), considering the reflected, the incident and the 
transmitted waves. Since we chose , we get  and . Since we are interested in 
finding , we have to determine . Using equations (2) and (3), we can write  and  in terms of  :  

               

          . 

Substituting these in the first equations of  relations (2) and (3) yields 

         . 

Now we can calculate , and it is actually a bit easier to write down the inverse of  the transmission 
coefficient: 

          

where we have expressed  and  in terms of   and . Even though , being , the 
particle may “tunnel” through the barrier with some probability. Notice that if  the barrier is very 
thin, so that , then  and the barrier is nearly “transparent.” On the other hand, if  the 
barrier is very wide, with , the hyperbolic sine function can be approximated by 

. In this case,  

        , 

that means, for wide barriers, the tunnelling probability decreases exponentially with . 
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